
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2010; 62:428–448
Published online 2 April 2009 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.2027

Well-balancing issues related to the RKDG2 scheme
for the shallow water equations

Georges Kesserwani1,2,∗,†, Qiuhua Liang1, José Vazquez2 and Robert Mosé2
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SUMMARY

Discontinuous Galerkin (DG) finite element methods have salient features that are mainly highlighted by
their locality, their easiness in balancing the flux and source term gradients and their component-wise
structure. In the light of this, this paper aims to provide insights into the well-balancing property of a
second-order Runge–Kutta Discontinuous Galerkin (RKDG2) method. For this purpose, a Godunov-type
RKDG2 method is presented for solving the shallow water equations. The scheme is based on local
DG linear approximations and does not entail any special treatment of the source terms in order to
achieve well-balanced numerical results. The performance of the present RKDG2 scheme in reproducing
conserved solutions for both free surface and discharge over strongly irregular topography is demonstrated
by applying to several hydraulic benchmarks. Meanwhile, the effects of different slope limiting procedures
on the well-balancing property are investigated and discussed. This work may provide useful guidelines
for developing a well-balanced RKDG2 numerical scheme for shallow water flow simulation. Copyright
q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Shallow water equations have a wide range of applications in describing one- or two-dimensional
free surface flow hydrodynamics in artificial channels, natural rivers, coastal areas, etc. A large
number of numerical schemes and computational techniques have been reported in the literature
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for solving these equations using finite difference, finite volume or finite element methods [1–5].
During the past two decades, Godunov-type schemes [1, 6] have become popular in solving the
hyperbolic conservation laws that consists of the shallow water equations owing to their superior
advantage of automatic shock-capturing. A finite volume Godunov-type scheme solves the integral
form of the governing equations at the discrete level with the computational domain decomposed
onto a grid. The flow data are normally stored at the cell centres, representing the local averages of
flow variables over an entire cell. The cell-centred flow variables are updated in time by correctly
balancing the interface fluxes that are approximated by the Riemann solutions [7]. Thus, efficient
and accurate computation of fluxes across cell interfaces is crucial for a high-order finite volume
scheme. As the flow data are only available at the cell centres, accurate point values of the flow
variables at the cell interface must be reconstructed from the neighbouring cell-centred information
in order to obtain a high-order approximation. These face values are then used to calculate interface
fluxes by solving local Riemann problems. This process may be defined as local if it only involves
the flow information from the direct neighbouring cells. The simplest finite volume model would
be the one based on a three-point scheme that requires than information from the cell under
consideration and its two direct neighbours. However, any three-point Total Variation Diminishing
(TVD) scheme is at most first-order accurate [5]. To achieve second-order accuracy under the TVD
condition, at least a five-point stencil scheme must be employed [2].

To reach the desirable high-order accuracy without using a reconstruction procedure, Discon-
tinuous Galerkin (DG) approximating polynomials are of great interest. A DG spatial framework
starts with the local averages of flow information together with their corresponding local (natural)
high-order slopes on a three-cell scheme. Even for simulations involving locally steep gradients
of the flow variables that require a slope limiting process, computation is at most performed on
a five-cell stencil [8]. DG methods, therefore, provide an attractive alternative and probably a
more efficient way for solving the shallow water equations or the so-called Saint Venant equa-
tions. For time-dependant problems, the usual strategy is first to apply a DG scheme to discretize
the governing equations in space and then to employ an appropriate time integration method to
march the flow variables to a new time step. A particularly powerful choice is to combine a DG
approach with a Runge–Kutta (RK) time integration method [9], which is termed RK Discontin-
uous Galerkin (RKDG) scheme (refer to [10] for a fundamental background). RKDG methods
boast about their advantages in locality, Godunov-type features, adaptivity in polynomial order,
conservation properties, and many others [10–14].

In recent years, shallow water equations have been increasingly used in real-world river
modelling and flood simulations, where the domain topographies are normally very complex (e.g.
mountainous areas, abruptly varying river banks, rural and urban floodplains). It is well-known
that a numerical scheme should be well balanced, i.e. preserve the solution of a lake at rest at
the discrete level [15–19], in order to obtain sensible solutions for problems involving irregular
bed profiles. Constructing a well-balanced scheme for predicting flow hydrodynamics over highly
complicated domain topographies, especially in the context of Godunov-type methods [6], is still a
challenging issue receiving intensive attentions from scientific researchers and hydraulic modelers.
In an early paper, Roe [20] indicated that a pointwise evaluation of the source terms is not a suitable
strategy for constructing a well-balanced scheme. Now the necessity of an upwind discretization
of the source terms is widely recognized [21–25] and reliable numerical simulations can only be
obtained from numerical schemes that balance the flux and source term gradients.

In developing a well-balanced scheme for shallow water flows, Bermúdez and Vázquez-Cendón
[21] proposed an upwind method to handle the bed slope source terms using the Q-scheme of van
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Leer and Roe [21] and defined the so-called C-property (C stands for Conservation). A scheme
satisfying the C-property prevents the propagation of parasitic waves in steady and quasi-steady
flows. Such a scheme is also referred to as well-balanced by Greenberg and LeRoux [26] and
later many other investigators [3, 18, 19, 27, 28]. The upwind treatment of source terms has been
adopted and improved for achieving well-balanced schemes by many other researchers. Vázquez-
Cendón [25] investigated further the upwind method for discretizing the source terms and widened
the range of applications for more complex problems. LeVeque [16] developed a high-resolution
method for balancing the flux and source term gradients that provides accurate solutions for
quasi-steady problems. But the method faces difficulty when simulating steady transcritical flow
with shocks. Hubbard and Garcı́a-Navarro [29] extended the upwind philosophy of Bermúdez and
Vázquez-Cendón [21] and presented a well-balanced high-resolution MUSCL scheme. The scheme
is able to handle steady and unsteady transcritical flows with shocks. Črnjarić-Žic et al. [22]
proposed a well-balanced high-order finite volume upwind WENO schemes for the open-channel
flow problems. Crossely and Wright [23] combined the local time stepping techniques and the
upwind treatment of source terms to achieve well-balancing. Yet, source term upwinding is not
straightforward for the high-order RKDG methods due to the necessity of dealing with high-order
approximations of the source term integrals [8].

Other techniques have also been reported in the literature to achieve a well-balanced scheme.
Zhou et al. [30, 31] initiated a simple surface gradient method (SGM) within the MUSCL-Hancock
scheme. The ground of the method is to consider the formulation of the shallow water equations
with the flux vectors evaluated in term of the surface gradient variable. This renders a mathemati-
cally well-balanced system without any need of special treatment for the source terms [3, 32]. The
SGM can be used in any high-resolution Godunov-type scheme that requires data reconstruction
and was latterly applied by Tseng [33, 34] to improve the performance of many renowned traditional
high-resolution TVD methods and by Caleffi et al. [35] to build a high-order well-balanced central
WENO scheme. Recently, Xing and Shu [36] presented a more general approach to the SGM
and applied it to furnish a class of high-order finite volume WENO schemes and finite element
RKDG methods with the well-balanced property. The key ingredient of the approach is a proper
decomposition of the source terms that ensures the well-balancing and preserves the genuinely
high-accuracy of the methods. However, the drawback of this method is its complexity, which was
also acknowledged by the authors in their recent paper [37]. The SGMwas also considered by Aureli
et al. [28] to build a weighted SGM in the framework of the SLIC scheme [5]. The method
computes water depth at the cell boundaries through a weighted average of the extrapolated
values deriving from depth gradient method and SGM reconstruction. In the approach of Audusse
et al. [27], another technique called hydrostatic reconstruction was introduced for achieving
well-balancing in the context of a finite volume Godunov-type method. The extension of this
method to very high-order accurate schemes is described by Noelle et al. [18]. Xing and Shu [37],
based on a generalization of the method due to Audusse et al. [27] and Noelle et al. [18], estab-
lished a group of easier approaches for constructing well-balanced RKDG and WENO schemes
by allowing more freedom in defining the approximate polynomials. The enhanced approaches
require less computational efforts, at least for the RKDG methods.

This work discusses in depth the well-balancing issues in the context of a second-order RKDG
scheme (RKDG2) for numerically solving the Saint Venant equations. A three-cell well-balanced
RKDG2 scheme is first presented. The difference between the proposed numerical scheme and
any other second-order finite volume method is that the local linear approximation is based on
a local well-balanced hypothesis, which leads to a natural well-balanced scheme for both water
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surface elevation and discharge without any need for special treatment of the source terms. The
well-balanced local RKDG2 scheme is extended to wider applications by incorporating with a
slope limiting procedure and the effects of different slope limiting procedures on the well-balancing
property are investigated and discussed in the context of numerical tests. The paper is organized as
follows. Following in Section 2, the governing shallow water equations are introduced. Section 3
details the well-balanced local RKDG2 numerical scheme and the slope limiting procedure for more
general simulations. In Section 4, the performance of local RKDG2 scheme is validated against
a number of numerical benchmark tests and the effects of different slope limiting procedures are
also discussed. At last, brief concluding remarks are drawn in Section 5 to complete the work.

2. SHALLOW WATER EQUATIONS

Situations in fluid dynamics where the horizontal length scale is much greater than the vertical
extent are common in real-life applications, e.g. flow over a floodplain or along a wide channel
reach. In these cases, the 3D Navier–Stokes equations that describe the flow dynamics may be
depth-averaged and simplified to become the 2D shallow water system. When modelling flow
hydrodynamics in long rivers and artificial channels, the dimensionality of 2D shallow water
equations may be further reduced to one, which leads to the 1D nonlinear shallow water equations.
The conservative form of the Saint Venant equations written in term of water depth h (m) and
unit-width discharge q (m2/s) is given by

ht +qx = 0

qt +(q2/h+gh2/2)x = ghS0
(1)

where x denotes the space coordinate, t represents time, g is the gravity acceleration, S0(x)=
−�z/�x is the bed slope term (or bed gradient) with z(x) being the channel bottom elevation. The
above governing partial differential equations (PDEs) may be also written in a matrix form as

Ut +Fx =S (2)

where U=[h,q]T is designated as the vector of conserved flow variables, F=[q,q2/h+gh2/2]T
is the flux vector, S=[0,ghS0]T is the vector containing the source terms.

Employing the flux Jacobian matrix (J=�F/�U) with respect to the flow variable vector,
Equation (2) can be also expressed in a quasi-linear form

Ut +JUx =S (3)

Herein J has two real eigenvalues �1,2=u±c where u is the velocity (inertia effects) and c=√
gh

is the wave celerity (gravitational effects). The two eigenvalues are real and distinct when h>0,
which indicates the hyperbolicity of the governing equations. The corresponding independent and
real eigenvectors are given by e1,2=[1,�1,2]T.

3. WELL-BALANCED RKDG2 METHOD

Godunov-type upwind schemes [1, 6] are one of the most accurate group of numerical methods
for solving the nonlinear hyperbolic equations. In this section, we first detail a Godunov-type
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scheme based on local finite element DG linear approximations. The scheme naturally achieves the
well-balanced property without necessity for any special treatment of the bed slope source term.
Then a slope-limiting procedure is briefly described to extend the local scheme to more severe
flow simulations.

3.1. A review of the RKDG2 scheme

The computational domain is divided into N cells with cell i defined as Ii =[xi−1/2; xi+1/2],
where 0= x1/2<x3/2< · · ·<xN+1/2= L are the boundary points and xi =(xi+1/2+xi−1/2)/2 is the
cell centre. The cells are assumed to be uniform, of size �x= xi+1/2−xi−1/2. A local linear
approximationUh =[hh(x, t),qh(x, t)]T toU(x, t) belonging to the finite-dimensional space P1(Ii )
[10] is used to achieve second-order spatial accuracy.

Similar to the traditional finite element method, the PDE system (2) is weighted by a continuous
test function �h and integrated locally over Ii to give∫

Ii
�tUh(x, t)�h(x)dx+

∫
Ii

�xF(Uh(x, t))�h(x)dx=
∫
Ii
S(Uh(x, t), S0(x))�h(x)dx (4)

Integration by part to the flux derivative terms gives the following weak formulation:∫
Ii

�tUh(x, t)�h(x)dx+
[
F(Uh(xi+1/2, t))�h(xi+1/2)−F(Uh(xi−1/2, t))�h(xi−1/2)

−
∫
Ii
F(Uh(x, t))�h(x)dx

]
=
∫
Ii
S(Uh(x, t), S0(x))�h dx (5)

The system (5) is decoupled by adopting the Legendre polynomial as a local basis function [10].
In each cell, the local approximate linear solution Uh(x, t) is generated by an average value of

flow variables U0
i (t) and a slope value U1

i (t) as

Uh(x, t)�Ii =U0
i (t)+2U1

i (t)(x−xi )/�x (∀x ∈ Ii ) (6)

where {U0
i (t),U

1
i (t)} are, in the context of a finite element framework, the degrees of freedom that

should be stored and evolved locally in each cell over time starting from the compatible projection
of the initial conditions U0(x)=U(x,0),

U0
i (0) = (U0(xi+1/2)+U0(xi−1/2))/2

U1
i (0) = (U0(xi+1/2)−U0(xi−1/2))/2

(7)

The local initial data P1(Ii )-projection to give the above initial conditions will be discussed in
details in Section 3.2.

After assigning the initial data, the next step is to evaluate the spatial update of dU0,1
i /dt ,

dU0,1
i /dt=L0,1

i (U0,1
i−1,U

0,1
i ,U0,1

i+1) (8)

where L0,1
i are the DG operators for spatially approximating the time derivative of the degrees

of freedoms U0,1
i . The operators require, in principle, information from three cells. However, as
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it will be discussed in Section 3.3, more cells will be involved when performing a slope limiting
procedure. The final forms of the spatial operators are,

L0
i =− 1

�x
[F̃i+1/2−F̃i−1/2−�xS(U0

i , S0)] (9)

L1
i =− 3

�x

{
F̃i+1/2+F̃i−1/2−F(U0

i +U1
i /

√
3)−F(U0

i −U1
i /

√
3)

−�x
√
3/6[S(U0

i +U1
i /

√
3, S0)−S(U0

i −U1
i /

√
3, S0)]

}
(10)

where F̃i±1/2 are the numerical fluxes across the positive and negative cell interfaces resulting from
solutions of the local Riemann problems, which are estimated using the approximate Riemann
solver of Roe [20, 38]. For example, the fluxes F̃i+1/2 through the cell interface i+1/2 can be
computed by (similar formulae can be obtained for fluxes through other cell interfaces)

F̃i+1/2= F̃(U−
i+1/2,U

+
i+1/2)=

1

2

[
U−
i+1/2+U+

i+1/2−
2∑

p=1
�p
i+1/2|�̃

p
i+1/2|ẽpi+1/2

]
(11)

Together with a local adjustment of the intermediate eigenvalues,

|�̃p
i+1/2|∗ =

⎧⎨
⎩

|�̃p
i+1/2| if |�̃p

i+1/2|��p

(�̃
p
i+1/2)

2/2�p+�p/2 if |�̃p
i+1/2|<�p

(12)

where

�p =min(c̃i+1/2,max(0,2(�+,p
i+1/2−�−,p

i+1/2))) (13)

Then a two step RK method is adopted to achieve second-order accuracy in time,

(U0,1
i )n+1/2=(U0,1

i )n+�t (L0,1
i )n (14)

(U0,1
i )n+1=[(U0,1

i )n+(U0,1
i )n+1/2+�t (L0,1

i )n+1/2]/2 (15)

It is worth pointing out that the stability of the aforementioned explicit RKDG2 scheme is controlled
by the CFL criterion and the CFL number should be at most equal to 0.333 to ensure the stability
of the degrees of freedom.

It is noted that if only the L0
i operator is used the finite element approximation is essentially

a traditional finite volume scheme. Working solely on the central averages, the aforementioned
spatial operator incorporated with the first-step time marching approach in Equation (14) leads to
the traditional first-order upwind scheme.

3.2. Natural well-balancing in second-order

When a bed slope source term is present, the schemes must satisfy a correct balance between
the source term and flux gradients (at the computational level), in order to properly reproduce
stationary (or almost stationary) solutions. Following many previous researches [22, 24, 25, 28, 32],
numerical method developers are particularly interested in schemes that are able to maintain the
still water surface of a lake at rest (h+z=constant and q=0) over irregular topology, where
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Figure 1. Schematic view of the channel geometry for the quiescent flow test.

extreme slopes are invoked (such as the complex features of the channel bed as illustrated in
Figure 1 for the quiescent flow test). For this case of motionless water in a lake, the first (continuity)
equation, of (1), is satisfied exactly for any consistent scheme given that the time derivative and
the velocity (or discharge) terms automatically vanish. For the second (momentum) equation, part
of the flux derivative term (from the LHS) and the bed slope source term (from the RHS) remain
after eliminating the zero velocity terms, and the equation reduces to the hydrostatic balance of
the vertical pressure gradient and gravitational force,

(gh2/2)x +ghzx =0⇔(h+z)x =0 (16)

This simplified momentum equation has to be satisfied at the discrete phase in order to construct
a well-balanced scheme.

The pioneering work of Xing and Shu [37] provides an effortless basis to retain the well-
balanced property in a DG environment. The well-balancing can be achieved by assuming that Uh,
which is the numerical approximation of U, is a solution of Equation (2) with the modified source
term vector S(U, (S0)h)=[0,gh(S0)h]T, where (S0)h =−�zh/�x and zh is the P1(Ii )-projection
of z(x) (as shown in Figure 2 for the case of quiescent flow). Following this hypothesis, the still
water conditions remain locally verified (hh+zh =constant and qh =0) and lead to a natural well
balancing,

(gh2h/2)x +ghh(zh)x =0⇒F(Uh)x =S(Uh, (S0)h) (17)

As a result, the polynomial approximation of the channel bottom function (zh) has to be constructed
using the same generation function as that for the approximate solutions Uh,

zh(x)�Ii = z0i +2z1i (x−xi )/�x (∀x ∈ Ii ) (18)
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Figure 2. P1-projection of the bed topographic function weighted against the original bed function.

The channel bottom data projection is obtained similarly as the initial condition projection of the
flow vector [39]. Thus, the local average value (z0i ) and the slope value (z1i ) are defined by

z0i = 1

�x

∫ xi+1/2

xi−1/2

z(x)dx≈ 1

2
(z(xi+1/2)+z(xi−1/2)) (19)

z1i = 6

�x2

∫ xi+1/2

xi−1/2

z(x)(x−xi )dx≈
√
3

2
(z(xi +�x

√
3/6)−z(xi −�x

√
3/6)) (20)

The corresponding bed gradient term is,

(S0)h�Ii =− d

dx
zh(x)�Ii =−2z1i

�x
(21)

Consequently, the bed slope depends only on the local slope value z1i , which is reasonable and
is the starting point of analysing of the natural well-balancing property of the scheme. In effect,
knowing that z1i is constant over Ii , and supported by Equation (20), z1i should be a difference
between two local z-values. To identify this local slope, a linear interpolation is performed to look
at the point z(xi +�x

√
3/6)(

xi + �x
√
3

6
, z

(
xi + �x

√
3

6

))
∈[xi ; xi+1/2]×[z(xi ); z(xi+1/2)]⊂Ii×[z(xi−1/2); z(xi+1/2)] (22)

This implies that the point belongs to the local spatial domain. The linear interpolation produces
the following:

z

(
xi + �x

√
3

6

)
=
(
1−

√
3

3

)
z(xi )+

√
3

3
z(xi+1/2) (23)
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Similarly for the second intermediate local point z(xi −�x
√
3/6),(

xi−�x
√
3

6
, z

(
xi−�x

√
3

6

))
∈[xi−1/2; xi ]×[z(xi−1/2); z(xi )]⊂ Ii ×[z(xi−1/2); z(xi+1/2)] (24)

and the linear interpolation produces,

z

(
xi − �x

√
3

6

)
=
(
1−

√
3

3

)
z(xi )+

√
3

3
z(xi−1/2) (25)

Substituting Equations (23) and (25) into Equation (20), the local constant slope z1i is obtained,

z1i = 1
2 (z(xi+1/2)−z(xi−1/2)) (26)

Subsequently, the bed slope source term is obtained

(S0)h�Ii =− 2

�x

[
1

2
(z(xi+1/2)−z(xi−1/2))

]
=− z(xi+1/2)−z(xi−1/2)

�x
(27)

Equation (27) is a direct discretization of the bed slope source term, but involves only the local
interfacial values of the bed function. Overall, for a second-order DG scheme (e.g. the present
RKDG2 scheme) based on local linear approximation, well-balanced property is naturally gained
provided that the bed slope source term is discretized by (27). However, the extension of the
proposed technique to an RKDG scheme higher than second-order is not straightforward and is
opened to future research.

Remark
If one considers another (traditional) way of approximating the bed slope source term,

S0(xi )=− z(xi+1)−z(xi−1)

2�x
(28)

which involves non-local cell-averaged values. The RKDG2 scheme is well-balanced only if the
channel bottom function is uniform throughout the domain. We reconsider the two intermediate
spatial points as follows:(

xi + �x
√
3

6
, z

(
xi + �x

√
3

6

))
∈[xi ; xi+1]×[z(xi ); z(xi+1)] /⊂ Ii ×[z(xi−1/2); z(xi+1/2)] (29)

and(
xi − �x

√
3

6
, z

(
xi − �x

√
3

6

))
∈[xi−1; xi ]×[z(xi−1); z(xi )] /⊂ Ii ×[z(xi−1/2); z(xi+1/2)] (30)

Then we again perform the linear interpolation, calculate the values z(xi ±�x
√
3/6) and substitute

them back into Equation (20). This yields the following local slope value defined by non-local
averages:

z1i = 1
4 (z(xi+1)−z(xi−1)) (31)
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Table I. L2-errors and numerical order of accuracy for Section 4.1.

RKDG2 scheme

h q

No. of cells L2-errors Order L2-errors Order

25 2.9986e−004 — 3.4e−003 —
50 7.3673e−005 2.0251 8.6524e−004 1.9953
100 1.8247e−005 2.0134 2.1647e−004 1.9989
200 4.6672e−006 1.9671 5.2381e−005 2.0471
400 1.1405e−006 2.0329 1.2900e−005 2.0217
800 2.7340e−007 2.0605 3.1267e−006 2.0447

Hence, instead of Equation (27), the following bed slope term is obtained:

(s0)h�Ii =− 2

�x

[
1

4
(z(xi+1)−z(xi−1))

]
= S0(xi ) (32)

This is contradictory with the local feature of the method. According to Equations (20) and (21),
z1i and S0 should be defined from the data satisfying the local linear approximation (as bed slope
may not be constant across cells) to ensure the compatibility with the overall numerical scheme.

3.3. Slope limiting procedure

In the above local RKDG2 scheme, the numerical fluxes F̃i±1/2= F̃(U−
i±1/2,U

+
i±1/2) are calculated

by solving the corresponding local Riemann problems using Equation (11). U∓
i±1/2=U0

i ±U1
i are,

respectively, the local limit values of the DG approximate solution at the left and right hand side
of the i+1/2 and i−1/2 cell interfaces. As a result, the three-cell scheme consisting of Equations
(9) and (10) is second-order accurate (Table I) and well-balanced for both water depth and flow
discharge. However, along with well-balancing, the non-oscillatory property of a higher-order
scheme has also to be maintained when it is applied to a problem with severe gradients flow
variables, e.g. strong shock. Therefore, before solving the Riemann problem at the interface, the
local approximate solution to the slope (U1

i ) must take into account a slope limiting process to
avoid the parasitical Gibbs phenomenon. In this work, a generalized minmod limiter is adopted to
quantify the slopes for damping the numerical oscillations.

The Riemann solutions (fluxes) are estimated by inputting, to the Roe solver, the (discontinuous)
slope limited approximate values (Û−

i±1/2, Û
+
i±1/2)

Û∓
i±1/2=U0

i ±minmod(U1
i ,U

0
i+1−U0

i ,U
0
i −U0

i−1) (33)

and

minmod(s1,s2,s3)=
{
sgn(s1)min(|s1|, |s2|, |s3|) if sgn(s1)=sgn(s2)=sgn(s3)

0 otherwise
(34)

Owing to the use of non-local average values (involving five cells), the slope limiting procedure
essentially destroys the conservativity of the approximate flow variables and thus breaks the
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well-balancing property of the overall numerical scheme. This is also proved by the numerical
evidence in Section 4. As suggested by Xing and Shu [37], the use of the water surface elevation
instead of water depth in defining the slope limiter, to reduce the corresponding bed contribution
in the limiting function, may be helpful in reducing the instability induced near the steep bed slope
gradients.

4. NUMERICAL TESTS, RESULTS AND DISCUSSIONS

This section demonstrates the performance of the present local RKDG2 scheme in balancing flux
and source term gradients by applying it to solve a number of steady and unsteady flow tests
over varying bed geography. The effects of different slope limiting procedures (based on either
water depth or surface elevation) on the well-balancing property of the scheme are also intensively
investigated and discussed. The global second-order accuracy of the local RKDG2 scheme, in
the presence of bed topography, is first verified. The quiescent flow test is then considered to
emphasize the merit of respecting the locality property when discretizing the bed slope term. More
benchmark tests are presented to stress the significance of the well-balanced property and evaluate
the effects of the slope limiting procedures. N =50 computational cells have been chosen when
simulating all the steady problems and the L2-norm has been utilized as the convergence criterion.

4.1. Accuracy test in the presence of non-flat bottom

In this example, the second-order accuracy of the improved RKDG2 scheme is quantified by
seeking numerical solutions to a generic test of shallow flow over non-flat bottom. Similar to Xing
and Shu [37], the bottom function and initial conditions of the test are defined by

z(x)=sin2(�x) (35)

and

h(x,0) = 5+exp[cos(2�x)]
q(x,0) = sin[cos(2�x)] (36)

where x ∈[0;1] with transmissive boundary conditions. Since the analytical solution is not available
explicitly for this case, a reference solution obtained on a very fine mesh of N =12800 cells is
produced and treated as an exact solution in assessing the numerical errors. Simulations are run
up to t=0.05s on meshes with 25,50,100,200,400 and 800 cells. Figure 3 shows the initial flow
conditions at t=0 and reference numerical predictions at t=0.05s. Table I lists the L2-errors
evaluated for the cell averages and the order of accuracy for the proposed local RKDG2 scheme
(three-cell version). It is evident that the second-order accuracy of the scheme is confirmed for
both water depth and discharge in all of the simulations.

4.2. Quiescent flow test

This is a classic test, recommended by the Working Group on Dam-Break Modelling [40], for
verifying the capability of a numerical scheme to handle natural topographies. The test is about
a motionless flow (h+z=12m and q=0m2/s) occurring in a 1500m long channel. The channel
has a highly complex domain geometry and a bed topography containing positive and negative
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Figure 3. Initial and final solutions of water depth and discharge for the transient accuracy test.

steep slopes, as shown in Figure 1. We solve it here to testify the superior well-balancing property
of the improved RKDG2 scheme. Starting from the motionless initial flow conditions and simple
reflective or transmissive boundary settings, a well-balanced numerical scheme should predict a
flow that preserves the horizontal water surface and zero discharge throughout a long enough
simulation as no disturbance is assumed to drive the flow.

Figure 4 shows the predictions after 5000 s of simulation time, using the RKDG2 scheme
associated with the non-local approximation of bed slope source term given by (28). Spurious
fluxes with unacceptably large errors are generated. Figure 5 presents the results obtained by the
RKDG2 scheme implemented with the local source term discretization proposed in this work.
The motionless flow conditions are accurately reproduced up to the scale of round-off error (as
illustrated for the discharge). The results compare favourably with those presented by Hubbard and
Garcı́a-Navarro [29] and Tseng [33] using different numerical schemes. However, the predictions of
Hubbard and Garcı́a-Navarro [29] and Tseng [33] are obtained on very fine meshes of N =600 cells
and N =500 cells, respectively, while only 50 cells are used in the current simulation. Numerical
experiments also show that, for this typical case with smooth solutions, the performance of the
RKDG2 scheme is similar, regardless whether the slope limiting procedure is taken into account.

4.3. Steady smooth flow over irregular bed topography channel

The previous problem is reconsidered with a non-zero flow discharge for a more realistic situ-
ation. Tseng [33, 34] also considered this case of smooth steady flow in a channel with strong
topographic variation to test several source term discretization techniques, aiming to improve a
number of second-order high-resolution TVD schemes. The channel is 1500m long and the bed
topology is the same as the previous case. Because of the steady state conditions, the discharge
should be constant at any cell over the computational domain. During a simulation, the downstream
water depth is fixed at 15m and the unit width discharge is specified to 0.75m2/s at the upstream
boundary. Figure 6 shows the numerical predictions of depth and discharge profile, after 2000 s of
simulation time, produced by the RKDG2 schemes with and without implementing the limiting
procedures. With regard to the depth profiles, all of the schemes generate satisfactory results when
comparing with the analytical profile and no obvious difference is observed. For the flow discharge,
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Figure 4. Comparing the exact solutions with the numerical predictions obtained by the non-local
RKDG2 schemes on a grid with 50 cells.

Figure 5. Comparing exact solutions with different RKDG2 predictions computed on a grid with 50 cells.

the three-cell local RKDG2 scheme without considering slope limiting reproduces perfectly the
analytical solution. However, the discharge predicted by the depth slope limited RKDG2 scheme
is found to deviate from the analytical solution in certain grid cells where the bed slope is steep,
i.e. the numerical discharge is not conserved. This, in turn, implies that the local RKDG2 scheme
provides well-balanced solutions to a flow over complex bed topography, while the scheme imple-
mented with the water depth slope limiting procedure destroys the scheme’s locality and is no longer
well-balanced. However, the well-balanced property is greatly regained after using the water surface
elevation to define the slope limiter.

4.4. A tidal wave flow over steps

A further informative study on the slope limiter effect is supplied in this example of a tidal
wave flow over a bed with two steps (non-differentiable points), proposed at the Workshop on
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Figure 6. Steady smooth flow over irregular topography: converged numerical solutions
obtained by different RKDG2 schemes.

Dam-Break Wave Simulation [40]. The flow occurs in an L=1500m long channel with the bed
profile, initial and boundary conditions, respectively, defined by,

z(x)=
{
8 if |x−L/2|�L/8

0 otherwise
(37)

h(x,0) = H(x)

u(x,0) = 0
(38)

h(0, t) = H(0)+4−4sin[�(4t/86400+1/2)]
u(L , t) = 0

(39)

where H(x)=H(0)−z(x) with H(0)=16m. Under these conditions, the tidal wave is relatively
short and an asymptotic analytical solution is derived by Bermúdez and Vázquez-Cendón [21],

h(x, t)=H(x)+4−4sin[�(4t/86400+1/2)] (40)

and

u(x, t)= (x−L)�

5400h(x, t)
cos[�(4t/86400+1/2)] (41)

Results at t=10800 and 32400s, corresponding to the half-risen tidal flow with maximum
positive velocities and to the half-ebbed tidal flow with minimum negative velocities, are compared
with the asymptotic reference solutions in Figure 7. The three-cell local RKDG2 scheme and
the version implemented with the surface gradient slope limiter predict fairly similar results.
However, as illustrated in Figure 8, the depth gradient slope limiting RKDG2 scheme produces

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:428–448
DOI: 10.1002/fld



442 G. KESSERWANI ET AL.

Figure 7. Tidal wave over steps: comparing the numerical predictions obtained by the local and surface
gradient limited RKDG2 schemes with the asymptotic reference solutions.

Figure 8. Tidal wave over steps: depth gradient limited RKDG2 results compared
with the asymptotic reference solution.
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spiky values for both water depth and discharge in the vicinity of the non-differentiable points and
the conservativity of the scheme is obviously destroyed.

4.5. Steady flow over a hump

This case of steady flow over a continuous but non-uniform bed topography (hump) is another
classical problem recommended by the Workshop on Dam-Break Wave simulations [40], which
has been widely used by many researchers to validate their well-balanced numerical schemes
(e.g. Vázquez-Cendón [25]; Zhou et al. [31]). Different flows, e.g. subcritical, supercritical and
transcritical, may be obtained by varying initial and boundary conditions [39]. Herein, only the

Figure 9. Steady subcritical flow over a bump: comparing numerical predictions obtained by local, depth
slope limited and surface gradient slope limited RKDG2 schemes with the analytical solutions.

Figure 10. Steady trancritical flow over a bump: comparing numerical predictions obtained by local, depth
slope limited and surface gradient slope limited RKDG2 schemes with the analytical solution.
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tests of subcritical flow and transcritical flow without a shock are considered to ensure that the
non-limiting RKDG2 scheme is still applicable. The bump in a 25m long channel is defined by,

z(x)=
{
0.2−0.05(x−10)2 if 8<x<12

0 otherwise
(42)

For the subcritical case, a unit width discharge of q=4.42m2/s is imposed at the upstream
boundary and h is set to 2m at the downstream end. For the case of transcritical flow without a
shock, it is only necessary to fix the upstream end discharge of q=1.53m2/s (the inflow discharge
and critical depth are taken as initial conditions). The analytical solutions for both tests are given
by Goutal and Maurel [40].

Figures 9 and 10 compare the different steady state numerical predictions (obtained after 4162
iterations) with the analytical solutions for the tests of subcritical flow and transcritical flow,
respectively. For both cases, perfect well-balanced solutions are reproduced by the local RKDG2
scheme. However, slope limiting procedures, to different extent, are observed to give numerical
solutions that deviate from the analytical solutions in the regions with non-uniform bed topography.
This, in turn, implies that the well-balanced property of the numerical scheme is violated. These
results are not surprising because, in implementing a slope liming procedure, the physical well-
balanced slope is replaced. Either the local feature of the scheme is thus destroyed in some cells,
or the accuracy order is degenerated to be first-order. Between the two limiting procedures, the
one using the free surface gradients provides better numerical solutions.

4.6. Dam-break over a rectangular bump

This test problem consists of discontinuous dam-break flow propagating along a channel with a
rectangular hump, where the channel settings are the same as those to the tidal flow benchmark
in 4.4. The initial conditions are given by two still water levels separated by a slim barrier,

q(x,0)=0 and h(x,0)=
{
20−z(x) if x�750

15−z(x) otherwise
(43)

The computations are carried out using 80 computational cells and transmissive boundary conditions
are imposed in both ends of the channel. The numerical results obtained by different RKDG2
schemes are shown in Figures 11 and 12 at two different output times t=15 and 60 s, respectively.
At t=15s, the water height h(x) is discontinuous at the points x=562.5 and 937.5m, while the
surface level h(x)+z(x) is smoother. As presented in Figure 11, predictions by the three different
RKDG2 schemes do not show much difference. However, as illustrated in Figure 12 for t=60s,
the three different RKDG2 schemes result in three distinct water surface profiles. Obviously,
for this case, the local RKDG2 scheme without slope limiter provides unreliable predictions as
numerical oscillations would destroy the flow solutions where severe shock appears. Supported
by the previous numerical evidences where unphysical numerical, over and under, shoots in the
vicinity of a step arise, the results produce by the depth gradient limited RKDG2 scheme would
also be not reliable. Therefore, the surface gradient limited RKDG2 scheme is the one working
well for this example (a problem involves complex topography and shock at the same time) and
gives well-resolved non-oscillatory solutions.
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Figure 11. Transient dam-break wave propagation over steps: flow solution at t=15s (different RKDG2
predictions are compared in the zoom-in graph).

Figure 12. Transient dam-break wave propagation over steps: flow solution at t=60s (different RKDG2
predictions are compared in the zoom-in graph).

5. CONCLUSIONS

Shallow flow hydrodynamics normally occurs in domains with highly complex geometries and
topographies. Therefore, when constructing a numerical model for practical shallow flow computa-
tions, e.g. river modelling, flood simulation, an important task is to accurately discretize the source
terms in the governing shallow water equations to account for the effects of complicated domain
features and other external forces on the flow dynamics. Compared with other source terms, (wind
stress, Coriolis effect, friction force, etc.), handling the bed slope term has been accepted as a
more challenging computational issue.

This paper has attempted to provide some insights into this problem in the context of constructing
a DG scheme for solving the Saint Venant equations. An RKDG2 numerical scheme [39] is first
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introduced where a simple approach based on the linear polynomial projection of the bottom
topographic function is used to discretize the bed slope source term. The proposed RKDG2 scheme
is constructed on a three-cell stencil, i.e. only the local flow information is required. This local
feature gives rise to a natural well-balanced numerical scheme that exactly satisfies the C-property
and provides conserved solutions for both free surface elevation and discharge. The outstanding
well-balanced property of the present local RKDG2 scheme is intensively tested by applying to
shallow flow benchmarks involving complex bed profiles.

However, when applying to simulate a flow with steep gradients, a second- or higher-order
numerical scheme is known to predict unphysical oscillations in the vicinity of the flow discon-
tinuity. Without any numerical implementation to avoid these spurious oscillations, the three-cell
local RKDG2 scheme may not be applicable to simulate more complex flow phenomena involving
shock-type flow discontinuity, despite its important advantages in well-balancing. Nowadays, a
well-established way to deal with this is to implement a slope limiting procedure. In order to
construct a slope-limited RKDG2 scheme, it is necessary to at least involve flow information
from five cells. The effects of two different slope limiting functions, defined based on either
water depth or surface gradient, on the flow solutions are then discussed in the context of numer-
ical tests. It is found that the absolute well-balancing property of the local RKDG2 scheme is
destroyed to some extent after incorporating a slope limiting procedure due to the violation of
the scheme’s locality. Comparing with the water depth limiting procedure, the surface elevation-
based slope limiting procedure can retain most of the well-balancing property and leads to
better solutions. Therefore, when applying to complex flow problems, e.g. dam-break simulations,
a surface gradient limited RKDG2 scheme may provide an optimum way to give well-balanced
and oscillation-free solutions.

In summary, this work discusses the important issues related to constructing a well-balanced
RKDG2 scheme for solving shallow water equations, which should be taken into account in
practical flow simulations.
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